Problem 87

A car engine moves a piston with a circular cross-section of $7.500 \pm 0.002 \mathrm{~cm}$ in diameter a distance of $3.250 \pm 0.001 \mathrm{~cm}$ to compress the gas in the cylinder. (a) By what amount is the gas decreased in volume in cubic centimeters? (b) Find the uncertainty in this volume.

Solution

Part (a)

Multiply the upper bounds for area $\pi(d / 2)^{2}$ and height to get the maximum volume, and multiply the lower bounds for area and height to get the minimum volume.

$$
\begin{aligned}
& \text { Maximum Volume: } \quad \pi\left(\frac{7.500+0.002}{2} \mathrm{~cm}\right)^{2}(3.250+0.001 \mathrm{~cm}) \approx 143.7 \mathrm{~cm}^{3} \\
& \text { Minimum Volume: } \quad \pi\left(\frac{7.500-0.002}{2} \mathrm{~cm}\right)^{2}(3.250-0.001 \mathrm{~cm}) \approx 143.5 \mathrm{~cm}^{3}
\end{aligned}
$$

Therefore, the volume the gas decreases is about

$$
\frac{143.7+143.5}{2} \mathrm{~cm}^{3}
$$

$$
143.6 \mathrm{~cm}^{3}
$$

Part (b)
The uncertainty is about

$$
\begin{gathered}
\frac{143.7-143.5}{2} \mathrm{~cm}^{3} \\
0.1 \mathrm{~cm}^{3} .
\end{gathered}
$$

